CLIMATE FORWARD Avoided Wildfire Emissions Forecast Methodology Version 1.0

Public Comment Webinar

July 7, 2022

Housekeeping

- All attendees are in listen-only mode
- Questions may be submitted via the Q&A dialog
- Zoom technical issues addressed via chat dialog
- We will follow up via email to answer any questions not addressed during the meeting
- The slides and a recording of the presentation will be posted online

Agenda

CLIMATE FORWARD

Climate Action Reserve

Working to ensure integrity, transparency, and financial value in the North American carbon market

Climate Forward accelerates action on climate change by encouraging investment in projects that mitigate future greenhouse gas emissions

A program of the CLIMATE ACTION RESERVE

Climate Forward:

a carbon project registry

CLIMATE FORWARD

Issues Forecasted Mitigation Units (FMUs) to projects that follow Reserveapproved methodologies

- Follows ISO 14064-2 and GHG Protocol for Project Accounting Standards
- Credits typically issued about one year after project implementation, for the forecasted climate benefit over the project's lifetime
- No long-term, ongoing monitoring, reporting and verification requirements

Expands the scope and scale of carbon project types

• Enormous potential for diverse, creative climate solutions

Tracks FMUs ownership and project activities in a publicly accessible database

A registry of forward-looking GHG reductions to balance against forward-looking GHG impacts

Accelerating Climate Mitigation: CLIMATE FORWARD

CLIMATE FORWARD

Climate Reserve Tonnes 1 CRT = 1 tCO₂e of achieved reductions

Issued for achieved GHG reductions

Used to mitigate any emissions

Protocols available for projects in North America

Reserve develops protocols for the offsets it issues

Forecasted Forecasted Mitigation Units 1 FMU = 1 tCO₂e of anticipated reductions

 $tCO_2e = tonne of carbon dioxide equivalent$

Issued for **forecasted** GHG reductions

Projects may be located

anywhere in the world

External parties may submit forecast methodologies

Introductions

CLIMATE FORWARD

Dogwood Springs Forestry

Methodology Development Process CLIMATE FORWARD

Workgroup Members (Organizations) **CLIMATE** FORWARD

Blue Forest Conservation	Sierra Nevada Conservancy
California Department of Forestry and Fire Protection	Sierra Pacific Industries
Colorado State Forest Service	The Nature Conservancy
FRST	TSS Consultants
Firewise Landscapes Inc / Frontline Wildfire Defense	US Forest Service
HQPlantations Pty Ltd	University of California, Berkeley
Placer County Air Pollution Control District	University of New Mexico
Renew West	

Funding support

element MARKETS

Shoulders we're standing on...

CLIMATE FORWARD

Why address wildfire emissions? CLIMATE FORWARD

Loyalton Fire, Calpine, CA, August 2020

By Duncan Kennedy: <u>CC-BY-SA-4.0</u>

VPD_{max} z-score

AAB

All acres

Correlation (Pearson's r) between AAB_{hs} and AAB and the three climate variables ($p \le 0.01$ for all relationships; Table S3). Arrows indicate that the climate variable has experienced a statistically significant increase from 1985-2017 (Table S5).

		AABhs			AAB	
Ecoregion	VPD _{max}	T _{max}	CWD	VPD _{max}	T _{max}	CWD
California Coast	0.67 个	0.58	0.69	0.70	0.62	0.69
Western Mountains	0.74 个	0.70 个	0.71	0.73	0.67	0.70
Northern Mountains	0.90 个	0.89 个	0.88	0.89	0.90	0.86
Southwest	0.59	0.40	0.64 个	0.55	0.41	0.56
Western US	0.83 个	0.79 个	0.74	0.80	0.73	0.69

Parks, S. A., & Abatzoglou, J. T. (2020). Warmer and drier fire seasons contribute to increases in area burned at high severity in western US 13 forests from 1985 to 2017. Geophysical Research Letters, 47(22).

Methodology Overview

Methodology introduction

Avoided Wildfire Emissions Forecast Methodology PUBLIC COMMENT DRAFT

> Version 1.0 June 2022

Accounts for emissions reductions associated with fuel treatment activities that modify the behavior of wildfires, reducing their severity and extent

Establishes eligibility rules, methods to calculate expected GHG emissions reductions, and procedures for reporting project information to the Reserve

Provides guidance for independent confirmation by a Reserve-approved confirmation body selected by the project proponent

Methodology Components

Project Definition

Eligibility

- Project Location
- Start Date / Crediting period
- Additionality
 - Performance Standard Test
 - Legal Requirement Test
 - Enhancement Payments
- Environmental/Social Safeguards
- Regulatory compliance
- Ownership & Double-Counting

Project Area Definition

Defining GHG Boundary

Quantification

- Delineating the project area
- Quantifying project emissions reduction
- Programmatic risk deduction

Monitoring / Reporting / Confirmation

- Sampling
- Confirmation field visit

Section 2 The GHG Reduction Project

2.1 Project Definition

Activity or set of activities that result in reduced wildfire emissions from forestlands relative to business-as-usual

Fuel treatments

- Mastication
- Broadcast / prescribed / cultural burns
- Thinning (e.g., thinning from below, crown thinning, selection cut), resulting in:
 - Increased quadratic mean diameter
 - Minimum basal area of 50 ft²
- Pruning
- Mechanical removal of surface fuels

2.2 Project Proponent

Who can be issued FMUs?

Project proponent:

- Entity that:
 - Has a Climate Forward registry account
 - Submits the project to the registry
 - Is responsible for reporting and confirmation
- Generally is the entity responsible for:
 - Organizing
 - Planning
 - Implementing or overseeing the implementation
- Not required to be underlying landowner of treatment areas
 - Must have written agreements with landowners whose lands are being treated
- Can aggregate treatments across ownerships, including across ownership types

Section 3 Eligibility

3.1 Location

- Western U.S.
- Limited based on data availability
- Private or public lands
- May be on locations where prior AWE projects took place (subject to quantification of net climate benefits)
 - New AWE project on same location uses fuel conditions present at the time it is initiated, including as impacted by previous projects
 - Altered conditions from prior treatments (and other activities/disturbances within the project area) are part of the baseline for new projects
- May be on locations where other C projects exist (e.g., stacked with an IFM project), but need to seek Reserve approval and guidance to prevent double-counting

3.2 Start Date & Crediting Period

Project start date

- Date that fuel treatment activities are first initiated
- May be up to 12 months prior to release of final methodology

Project listing deadline

- Submitted for listing within 1 year of the project start date
- If start date is prior to release of the methodology, may be submitted up to 1 year after the methodology release date

Crediting period

- Length of time over which forecasted GHG reductions are recognized for crediting
- 40 years

CLIMATE FORWARD

3.3 Additionality

Projects must yield surplus GHG removals "additional" to what would have occurred in the absence of the project

Performance standard

• Given the generally low prevalence of fuel treatments and the financial challenges associated with them, project activities are additional to the extent they reduce GHG emissions below what would have occurred under the baseline.

Legal requirement test

- Project activities must not be legally required
- Project proponent signs Attestation of Legal Additionality

3.3 Additionality

Enhancement payment stacking

- Submitting a project based on a practice that is also funded by the government or other parties via grants, subsidies, payments, etc., on the same land.
 - Examples: California Climate Investment funds, Natural Resources Conservation Service grants
 - Would practice have still happened in the absence of carbon project revenues?
 - If project has <u>all</u> fuel treatment costs fully covered by a grant or subsidy, it would have taken place even if a carbon project wasn't being registered → likely not considered additional
- Projects are allowed to receiving enhancement payments up to 85% of the cost of fuel treatments
 - If payments received >85%, seek Reserve guidance as soon as possible—may still be allowed
- BUT if payments based on quantified climate benefits generated (\$/tCO2e), then possibly:
 - Considered non-additional, or
 - Require quantification adjustments

3.4 Environmental & Social Safeguards

Existing laws/regulations provide basic environmental and social safeguards

Project proponents must:

- Report on potential adverse impacts to environmental and social issues, including air and water quality, endangered species, environmental justice.
- Coordinate with relevant local resource agencies and fire planning entities
 - Provide fuels management plan for minimum of 5 years from project start date
 - Obtain approval from majority of relevant resources/planning entities
 - Intent:
 - Promote aggregation/cooperation among smaller projects and prevent competition to be "first in"
 - Allow projects at scale \rightarrow benefits of the whole greater than the sum of its parts

CLIMATE FORWARD

3.5 Regulatory Compliance

- Project must be in compliance with all relevant legal requirements
- Sign an Attestation of Regulatory Compliance
- Provide an assessment of the risk of future non-compliance during the crediting period and identify how such risks will be reduced or mitigated

3.6 Ownership & Double-Counting

Ownership

- Credits issued to project proponent based on implementation of fuel treatments and their influence on future fire behavior and GHG emissions
 - Direct effects (from impacts on fire behavior within fuel treatment sites)
 - Indirect effects (from impacts on fire behavior flowing from fuel treatments sites onto non-treated sites within the project area, i.e., shadow areas)

Double-counting

- Avoid crediting for same GHG benefits recognized under another project
- Stacking projects may be allowed where no double-counting would occur
 - Example: AWE project stacking with an Improved Forest Management (IFM) project
 - AWE project must omit harvested wood products from fuel treatment activities since they would also be counted under the IFM project

CLIMATE FORWARD

Section 4 Project Area

29

CLIMATE FORWARD>

4 Project Area

- Project area consists of:
 - <u>Treatment areas</u> Locations where fuel treatment activities are performed
 - <u>Non-treatment areas</u> Locations where fuel treatments are not performed but that have the potential to have fire behavior and severity influenced by activities in treatment areas
- May comprise multiple ownerships/ownership types
- Delineated through modeling process

Section 5 GHG Assessment Boundary

5 GHG Assessment Boundary

Included pools:

- Standing live and dead trees
- Shrubs and herbaceous understory
- Lying dead wood
- Litter and duff
- Harvested wood products in use and in landfills (as long as not stacked with another project that accounts for it)
- Biomass combustion emissions (from prescribed burns and wildfires)
- Mobile combustion emissions (heavy machinery use for fuel treatments)

Section 6 Quantifying GHG Emission Reductions

Credit Calculation

Emissions Reductions = ([Emissions_{baseline}] – [Sequestered C_{baseline}]) – ([Emissions_{project}] – [Sequestered C_{project}])

Emissions savings > Diminished C sequestration

Project Area Delineation

Define the project area by modeling fire spread from each ignition point in project vicinity, with project area determined by burned areas that overlap the project's treatment area(s).

Model Forest Growth Without Fire

CLIMATE FORWARD

Model changes to tree and surface fuels data for each stand witih FFE-FVS over crediting period for baseline and project, absent wildfires and including backround harvesting to estimate changes in forest C

Model Fire Impacts – Emissions, Regen

At each time step for the baseline and the project: Estimate GHG emissions from fire and determine resulting stand conditions and delayed regeneration

CLIMATE FORWARD

Calculate Conditional Burn Probability

At each time step for the baseline and the project: Model wildfire behavior to determine likelihood of individual pixels to burn from a fire starting from each ignition point and to adjust emissions outcomes accordingly

CLIMATE FORWARD

At each time step for the baseline and the project: Adjust emissions outcomes and delayed regeneration results to account for probability of fire occurring in a given year

Input

GHG Emissions adjusted by CBP

- Delayed regeneration estimates
- Fire return interval

[% Annual Fire Risk]

Output

- Probable annual emissions
- Probable delayed regeneration

6.1 - 6.7 Quantification

Accounting steps

- 1) Project area delineation, selection, and characterization
- 2) Weather data
- 3) Management scenario development and fuel reduction treatment design
- 4) Forest carbon (forest growth and sequestration) calculation
- 5) Forest removals life cycle assessment (wood products) calculation
- 6) Wildfire emissions calculation
- 7) Delayed regeneration calculation
- 8) Fire ignition probability (fire return interval) assessment
- 9) Aggregated emissions accounting

1) Project area delineation, selection, and characterization, 2) Weather data

CLIMATE FORWARD

- Standardized input from Climate Forward:
 - Weather data (Two representative RAWS locations, 97th percentile, windspeed, temperature, fuel moisture)
 - Topographic data
 - Ignition maps (Historic ignitions from USFS)
 - Surface fuel models
- Approach:
 - Treatment polygons overlayed with ignition map
 - Add ignition points if <0.6/ha
 - Run fire spread model (8 hrs) to ignition points that impact treatment area

Example of RAWS output

Table 3: 97th percentile fire weather conditions for fire modeling.							
Variable	Variable SimFire FVS FConstMTTValue						
1-hr fuel moisture	4%	3%					
10-hr fuel moisture	4%	4%					
100-hour fuel moisture	5%	5%					
>3"	10%	N/A					
Duff	15%	N/A					
Herbaceous fuel moisture	N/A	39%					
Live woody fuel moisture	70%	70%					
Ambient air temperature	80° F	N/A					
Percentage of stand burnt	10%	N/A					
Wind speed	20 mph (20 ft)	21 mph					
Wind direction	N/A	Southwest (225 degrees).					

3) Management scenario development

• Standardized input from Climate Forward:

- Background forest management
- Approach:
 - Define fuel treatment spatial layers
 with:
 - Treatment types,
 - Locations, and
 - Timing

	Treatment	Year	Entity	Activity	_
s,	А	0	Federal	Remove ladder fuels & thin co-dominants	H
	А	1	Private	Prescribed burn	
	В	1	Federal	Remove ladder fuels & thin co-dominants	H H N
	В	3	Private	Prescribed burn	
	С	2	Federal	Prescribed burn	
	А	2	Federal	Prescribed burn	
	В	3	State	Prescribed burn	

Example: Eve et al. 2014

Table 6-6: Common Silvicultural Options by Most Commonly Managed Forest Type

CLIMATE FORWARD

Region	Forest Type	Generalized Practice
Rocky Mountain	Ponderosa pine	Plant 400-500 trees per acre, precommercial thin to 200- 300 trees per acre, commercial thin to 150-200 trees per acre at age 30-40; clearcut harvest at age 60-80
Norths	Lodgepole pine	Site prepare to expose mineral soil seedbed, natural regeneration by seeding, precommercial thin to 200-400 trees per acre, patch clearcut harvest at age 80-100
	Mixed conifer: ponderosa	Commercial thin: Starting at ages near 40 and continuing at various periodic cycles until regeneration; post-thinning stocking generally ranges between 150–250 ft ² ; variable rotation length, depending on objectives
Pacific Southwest ^h	Pacific pine, sugar pine, Douglas fir, incense cedar, white fir, Jeffrey pine, and California black oak	Commercial thinning with both patch regeneration and reserved areas: Similar to above, but with higher levels of variation in post-thinning stocking levels, small patches of regeneration, primarily to increase pine species, and small areas reserved from harvest, maintaining larger/older trees providing relatively unique wildlife habitats; variable rotation length, depending on objectives
DesiGe	Douglas fir/Ponderosa pine – low intensity	Site preparation by site scarification in small spots, natural regeneration, precommercial thin at age 20-25 years to 100-250 trees per acre, patch clearcut or seed-tree harvest at age 50-70
Northwest, East ⁱ	Douglas fir/Ponderosa pine – medium intensity (on more productive sites)	Mechanical site preparation to scarify soil and remove competing vegetation, plant with improved seedlings at approx. 400-500 per acre, precommercial thin at age 15- 20, commercial thin at age 30-40, patch clearcut or seed- tree harvest at age 50-70
Pacific Northwest, West ^j	Douglas fir	Site prepare stand with pre-emergent herbicides, plant with improved seedlings at approx. 450 per acre, commercial thinning as needed at age 20-30, fertilize as needed at age 30-40, clearcut harvest at age 40-50

4) Forest carbon (forest growth and sequestration) calculation

CLIMATE FORWARD

- Standardized input from Climate Forward:
 - Tree inventory
 - Regeneration assumptions

• Approach:

- FVS parametrization using verifiable sources
- FVS simulation runs (year 0 to 40 in 5-year timesteps):
 - Baseline, no wildfire
 - Project, no wildfire

Example: TreeN	lap USDA
Forest Service U.S. DEPARTMENT OF	AGRICULTURE MISSOULA FIRE SCIENCES LABORATORY Rocky Mountain Research Station (RMRS) Fire, Fuel, and Smoke Science (FFS) Program
Home About the Lab FFS Program	Apps & Products Projects Seminar Series ▼ News Galleries ▼ Search
Project Contacts	TreeMap: A tree-level model of the forests
 Principal Investigator: Karin Riley 	of the United States
Mark FinneyIsaac Grenfell	Machine learning matched forest plot data with biophysical characteristics of the landscape to produce a seamless tree-level forest map.
Contact: Karin Riley Research Collaborators: Jason Wiener, University of Montana	A map of the location, size, and species of every tree in the forests of the United States would be useful for any number of applications, ranging from habitat mapping to estimation of carbon resources. No such map currently exists, but we have used machine learning to make

5) Forest removals life cycle assessment (wood products) calculation

- Standardized input from Climate Forward:
 - Tree inventory
- Approach:
 - FVS simulation runs from Step 4
 - Assumptions on:
 - Harvest and transport emissions; e.g. Hennigar 2013 (Forgate); 0.4 odt metric/m3
 - No consideration of bioenergy or wood product substitution effects

6) Wildfire emissions calculation – Direct emissions

- Standardized input from Climate Forward:
 - Surface fuel models
- Approach:
 - FVS-FFE simulation runs (year 0 to 40 in 5-year timesteps):
 - Baseline with periodic wildfire (0, 5, ..., 40)
 - Project with periodic wildfire (0, 5, ..., 40)
 - Crosswalk FVS-FFE into FOFEM for non-CO₂ GHG emissions

Table 6.2 Non-CO₂ GHG emissions GWPs for conversion to CO₂e

GHG	GWP Factor ¹¹
CH ₄	25
NOx	-8.2
CO	1.0
PM2.5	9
NMOC	5

CLIMATE FORWARD

6) Wildfire emissions calculation – Indirect emissions

- Standardized input from Climate Forward:
 - Approved fire behavior models
- Approach:
 - Fire spread model with 8-hr runs
 - Determine Conditional Burn Probability (CBP) for each stand in Baseline and Project
 - Where CBP_P/CBP_{BSL} ratio <1, multiply wildfire emissions for that stand with CBP delta (CBP_{BSL}-CBP_P)

CLIMATE FORWARD>

7) Delayed regeneration calculation

- Standardized input from Climate Forward:
 - Percentage of acreage affected by delayed regeneration by forest type and ecoregion (P_{DR})
 - Carbon crosswalk for forgone sequestration (C_{DR})
- Approach:
 - Calculate area that burnt with flame length >4' for each:
 - Baseline and project
 - Time step
 - Forest type
 - Multiply delta (acreage BSL minus Project) with P_{DR} and C_{DR}

Delayed

16,473

10,281

6,226

6.082

5.892

5,695

5,280

5,199

4,686

4,077

3,525

3,430

1,846

832

747

612

565

262

50

22

17

81,798

regeneration

44%

87%

45%

36%

61%

44%

78%

52%

50%

62%

50%

9%

80%

86%

66%

82%

77%

94%

21%

10%

18%

55%

HARDWOOD HERBACEOUS SHRUB Grand Total

782

77

41

55

54

148

26

51

18

263

243

5

73

1

7

1

8

0

2

1,856 42,726

6,364

8.878

2,748

1.960

3.536

2,362

4,094

2,597

2,331

2,259

1.507

317

1,387

712

488

500

428

246

9

1

3

7) Delayed regeneration calculation

24

10

6

152

10

7,431

217

1,460

2.655

417

1,872

1.099

1,972

1.259

1.875

8) Fire ignition probability (fire return interval) assessment

- Standardized input from Climate Forward:
 - Fire probability map
 - CAL FIRE; USFS (relative fire probability)
 - Updated by most recent 10y fire probability (absolute fire probability)
- Approach:
 - Retrieve mean fire probability for project area

CLIMATE FORWARD>

8) Fire ignition probability (fire return interval) assessment

CLIMATE FORWARD

Example: Relative fire probability

50

9) Aggregated emissions accounting

- Standardized input from Climate Forward:
 - Accounting template (Excel)
- Approach:
 - Insert outputs from Steps 4-8:
 - Forest carbon stocks (BSL and Project)
 - CO₂ wildfire emissions (BSL and Project)
 - Non-CO₂ wildfire emissions (BSL and Project; in CO₂e)
 - Wood products (Net)
 - Delayed regeneration (BSL and Project)
 - Fire probability

GHG offset protocol: Avoided emissions from significant wildfires Calculation template v 8/15/2016 Example: Eldorado case study (2015-2018 OUERPOW project)

MT CO ₂ e/acre fire shed									
Parameter					Time (yrs)				
	0	5	10	15	20	25	30	35	40
Baseline									
Forest stock and growth	(318.7)	(338.8)	(354.2)	(374.4)	(389.7)	(408.3)	(423.2)	(440.4)	(453.8)
Constant (annual) probability of fire		1.66%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%
Periodic (5-year) probability of fire		8.3%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%
Wildfire		39.7	42.2	42.7	45.6	47.1	49.0	49.9	53.5
Non-CO2 GHGs		33.6	34.6	35.5	36.6	37.5	38.5	39.5	40.8
Weighted 5 year interval		6.1	6.4	6.5	6.8	7.0	7.3	7.4	7.8
Weighted cumulative		6.1	12.5	18.9	25.8	32.8	40.1	47.5	55.3
Total cumulative	(318.7)	(332.7)	(341.7)	(355.4)	(363.9)	(375.5)	(383.2)	(392.9)	(398.5)
(Fuel treatment) Project									
Forest stock and growth	(318.7)	(322.6)	(333.3)	(349.1)	(359.0)	(375.1)	(387.5)	(402.0)	(415.4)
Wildfire		20.8	21.9	23.7	25.2	25.5	26.6	26.8	28.4
Non-CO2 GHGs		28.7	29.1	28.9	29.1	29.7	30.2	30.5	32.3
Weighted 5 yr interval		4.1	4.2	4.4	4.5	4.6	4.7	4.8	5.0
Weighted cumulative		4.1	8.3	12.7	17.2	21.8	26.5	31.3	36.3
Net slash removed (zero for Climate Forward	d)	2.96				0.54			
Net slash diverted to bioenergy LCA		(1.1)	(1.1)	(1.1)	(1.1)	(1.3)	(1.3)	(1.3)	(1.3)
Net merchantable removed		2.55				0.22			
Wood products produced		(1.72)			1.1	(0.15)			
Wood products in use or landfill (%)		43%	43%	43%	43%	43%	43%	43%	43%
Harv. & trsp. incl. presc. burn emissions		0.1	-	-		0.0	-	-	-
Wood products LCA		(1.0)	(1.0)	(1.0)	(1.0)	(1.1)	(1.1)	(1.1)	(1.1)
Net mill waste fate		(0.8)	-	-	-	(0.1)	-	-	-
Mill waste bioenergy LCA (zero for Climate	Forward	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)
Mill waste fate non-bioenergy in-use (%)	100%	40%	10%	5%	0%	0%	0%	0%	0%
Mill wastefate non-bioenergy LCA		(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)
Net wood product substitution LCA		(1.8)	(1.8)	(1.8)	(1.8)	(2.0)	(2.0)	(2.0)	(2.0)
Avoided vegetation type conversion									
Vegetation type conversion baseline (%)		29%	32%	32%	34%	33%	35%	34%	36%
Vegetation type conversion project (%)		20%	25%	25%	27%	23%	30%	27%	27%
Weighted 5 yr interval LCA		(2.5)	(2.6)	(2.5)	(2.8)	(3.8)	(2.7)	(3.3)	(4.0)
Cumulative LCA		(2.5)	(5.1)	(7.6)	(10.3)	(14.1)	(16.8)	(20.1)	(24.1)
Total cumulative (pre risk deduction)	(318.7)	(325.2)	(334.3)	(348.2)	(356.4)	(372.2)	(382.5)	(395.6)	(408.0)
Net cumulative (pre risk deduction)	-	7.5	7.4	7.2	7.5	3.3	0.7	(2.7)	(9.5)
Net periodic (pre risk deduction)	-	7.52	(0.07)	(0.27)	0.37	(4.22)	(2.64)	(3.36)	(6.81)

GHG offset protocol: Avoided emissions from significant wildfires

Calculation template v 8/15/2016

Example: Eldorado case study (2015-2018 QUEBROW project)

-				MT CO	2e/acre fir	re shed							
Parameter	•	_ 1	40	45	Time (yrs)	25	20	25	40		CLIMA		
Baseline	0	5	10	15	20	25	30	35	40				
Forest stock and growth	(318.7)	(338.8)	(354.2)	(374.4)	(389.7)	(408.3)	(423.2)	(440.4)	(453.8)				
Constant (annual) probability of fire	(01017)	1.66%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%	1.7%				
Periodic (5-year) probability of fire	1	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%	8.3%				
Wildfire		39.7	42.2	42.7	45.6	47.1	49.0	49.9	53.5	-			
Non-CO2 GHGs		33.6	34.6	35.5	36.6	37.5	38.5	39.5	40.8				
Weighted 5 year interval		6.1	6.4	6.5	6.8	7.0	7.3	7.4	7.8				
Weighted cumulative		6.1	12.5	18.9	25.8	32.8	40.1	47.5	55.3	HI.	Large delta BSL vs.	Project	
Total cumulative	(318.7)	(332.7)	(341.7)	(355.4)	(363.9)	(375.5)	(383.2)	(392.9)	(398.5)				
(Fuel treatment) Project													
Forest stock and growth	(318.7)	(322.6)	(333.3)	(349.1)	(359.0)	(375.1)	(387.5)	(402.0)	(415.4)				
Wildfire		20.8	21.9	23.7	25.2	25.5	26.6	26.8	28.4				
Non-CO2 GHGs		28.7	29.1	28.9	29.1	29.7	30.2	30.5	32.3				
Weighted 5 yr interval	·	4.1	4.2	4.4	4.5	4.6	4.7	4.8	5.0				
Weighted cumulative		4.1	8.3	12.7	17.2	21.8	26.5	31.3	36.3				
Net slash removed (zero for Climate Forwar	rd)	2.96				0.54			•	1 -			
Net slash diverted to bioenergy LCA		(1.1)	(1.1)	(1.1)	(1.1)	(1.3)	(1.3)	(1.3)	(1.3)		Limited additional		
Net merchantable removed		2.55				0.22					timber production		
Wood products produced		(1.72)	-	-	-	(0.15)	-	-	-				
Wood products in use or landfill (%)		43%	43%	43%	43%	43%	43%	43%	43%				
Harv. & trsp. incl. presc. burn emissions		0.1	-	-	-	0.0	-	-	-				
Wood products LCA		(1.0)	(1.0)	(1.0)	(1.0)	(1.1)	(1.1)	(1.1)	(1.1)				
Net mill waste fate		(0.8)	-	-	-	(0.1)	-	-	-				
Mill waste bioenergy LCA (zero for Climate	e Forward)	(0.2)	(0.2)	(0.2)	(0.2)	(0.3)	(0.3)	(0.3)	(0.3)				
Mill waste fate non-bioenergy in-use (%)	100%	40%	10%	5%	0%	0%	0%	0%	0%		l arge delta BSL vs		
Mill wastefate non-bioenergy LCA		(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)				
Net wood product substitution LCA		(1.8)	(1.8)	(1.8)	(1.8)	(2.0)	(2.0)	(2.0)	(2.0)		Project		
Delayed regeneration	_												
Delayed regeneration baseline (%)		29%	32%	32%	34%	33%	35%	34%	36%				
Delayed regeneration project (%)		20%	25%	25%	27%	23%	30%	27%	27%				
Weighted 5 yr interval LCA		(2.5)	(2.6)	(2.5)	(2.8)	(3.8)	(2.7)	(3.3)	(4.0)				
Cumulative LCA		(2.5)	<u>(5.1</u>)	(7.6)	(10.3)	(14.1)	(16.8)	(20.1)	(24.1)		Net GHG benefits		
Total cumulative (pre risk deduction)	(318.7)	(325.2)	(334.3)	(348.2)	(356.4)	(372.2)	(382.5)	(395.6)	(408.0)		over time		
Net cumulative (pre risk deduction)	-	7.5	7.4	7.2	7.5	3.3	0.7	(2.7)	(9.5)				51
Net periodic (pre risk deduction)	-	7.52	(0.07)	(0.27)	0.37	(4.22)	(2.64)	(3.36)	(6.81)				

Eldorado case study: Accumulated C fluxes

CLIMATE FORWARD

Standardized data

Tool or dataset	Description	Relevance for the methodology
Ignitions	Ignition points have to be derived from USFS Spatial wildfire occurrence data for the United States (https://www-fs-usda-gov/rds/archive/Catalog/RDS-2013-0009.5)	Required to model wildfire behavior and determine the size of the project area depending on average wildfire size. See section methodology section 6.1.4 and 6.2.3
Tree inventory	The latest iteration of the TreeMap dataset provided by USFS has to be used as the underlying tree list (https://www-fs-usda- gov/rmrs/tools/treemap-tree-level-model-conterminous-us-forests)	Provides a tree-level model of conterminous U.S. forests at a 30m resolution. TreeMap data has to be updated by the project proponent to reflect the project's starting year. Any disturbances that occurred on the project area between the TreeMap vintage year and the project start date has to be fully captured (harvests, wildfire, fuel treatments, etc.)
Weather	Weather data has to be derived from RAWS (https://raws.dri.edu/)	Needed to identify the project area and simulate stand-level wildfire impacts and wildfire behavior/spread. The project proponent has to use at least a 10-year average besides the requirements specified in the methodology section 6.2.2.
Surface fuel models	ТВА	ТВА
Regeneration assumptions	ТВА	ТВА
Fire probability map	ТВА	ТВА
Delayed regeneration data	ТВА	ТВА
Background management	ТВА	ТВА
List of approved fire behavior models	ТВА	ТВА
Topographic data	The topographic data provided by Landfire (https://landfire.gov/topographic.php) is recommended to derive project-relevant topographic data. A maximum pixel size of 30 m x 30 m is required.	Relevant input for establishing the project area (methodology section 6.1.2) and for fire behavior modeling. Growth and yield modeling can be done aspatially and does not require topographic input.

6.8 Performance Decline

Fuel treatments have limited efficacy periods—accounted for in project modeling

No requirement for ongoing management to achieve forecasted benefits from project activities

10% programmatic ex ante risk discount is applied to all projects to address:

- Goal of crediting on conservative basis
- Uncertainty associated with
 - Estimating future climate benefits from treatments today
 - Probabilistic occurrence of future wildfires

Sections 7 / 8 / 9 Monitoring / Reporting / Confirmation

8.1 Project Submittal Documentation **CLIMATE FORWARD**

- Project Submission form
- KML (map) file of treatment areas

CONFIRMATION:

- Signed Attestation of Title form
- Signed Attestation of Legal Additionality form
- Signed Attestation of Regulatory Compliance form
- Project Implementation Report (PIR)
- KML (map) file of project area
- Confirmation Report, and Confirmation Statement
- From Confirmation Body: confirmation plan, sampling plan, and list of findings (not made public)

9 Confirmation

Confirmation process may commence once project is listed and project activities are completed

Desktop review to evaluate PIR and companion documents

- Eligibility requirements
- Modeling and FMU quantification
- Photo plot interpretations

Site visit to confirm project activities

- Project area
- Treatment area boundaries
- Post-treatment conditions

7.1 Photo Plots

Photo plots used to show:

- Data being used by the models are representative of actual conditions on the project site
- QMD has increased following fuel treatments based on thinnings

Plot attribute	Project proponent	Confirmation body
Location	Georeferenced datapoints; plots stratified by treatment type	Confirm location, statistics
# of plots	Based on treatment size	Confirm plot number in accordance with procedures
Imaging	360 degree fisheye pre- and post-treatment	Confirm image match
Image interpretation	 Dominant overstory and understory vegetation specie(s) Fire behavior fuel model choice Canopy base height estimate Canopy height estimate Overstory closure estimate 	Confirm choice (random selection of 20% of plots; 90% match for each metric)

7.1 Monitoring / 9.4 Confirmation

CLIMATE FORWARD

Plot attribute	Project proponent	Confirmation body			
Vegetation	Dominant vegetation types (overstory and understory)				
Fire behavior fuel model	e behavior fuel model Selection from Scott and Burgan (GTR-153)				
Canopy base height	In feet, to nearest 5'				
Canopy height	≥90% match for each metric				
Overstory canopy closure					

* Can also use remote sensing-based assessment, with confirmation body estimate within 10% of project proponent estimate

If 90% match not achieved:

- Perform on-the-ground adjustments to the treatment area(s)
- Adjust data inputs for modeling to reflect pre-treatment conditions
- Adjust data inputs for modeling inputs to reflect post-treatment conditions

Confirmation Body also reviews whether stands where thinnings occur have >50 ft² in basal area, either based on professional judgement or conducting random samples.

Next Steps

Public Comment Period

Deadline for comments: Monday, July 25, 2022

Documents available for comment

- Avoided Wildfire Emissions Forecast Methodology V1.0
- Repository of standardized data/assumptions for use by projects

Submit written comments to info@climateforward.org

CLIMATE FORWARD

Questions or Comments?

Contact Information

Jon Remucal Associate Director of Nature-Based Solutions (213) 542-0280 jremucal@climateactionreserve.org

> CLIMATE ACTION RESERVE

64